Section 5-5 Mousam River (Mousam and Kennebunk Rivers Alliance)

Mousam River

Mousam River is 23 miles long and originates at Square Pond, which flows to Mousam Lake in Shapleigh. From Mousam Lake, the river flows through the towns of Alfred and Sanford to Estes Lake. The Littlefield River and Middle Branch River flow into Estes Lake from the north. From Estes Lake, Mousam River continues through the town of Kennebunk before discharging to the Gulf of Maine at Parsons Beach. Back Creek (tidal creek) enters the Mousam River near the mouth. The river is dammed at several places along its route including at Mill Pond and No. 1 Pond in Sanford, Estes Lake, and Old Falls Pond.

Water quality in the Mousam River was impacted historically by industrial and commercial use related to mills in the towns of Sanford and Kennebunk (Baker, 1999). Today, water quality impacts are caused in large part by stormwater runoff associated with increasing development of the watershed and high levels of impervious surfaces in the town centers of Sanford and Kennebunk. Water quality is also impacted by several point source discharges to the main stem. In addition, the industrial legacy of the ten dams on the main stem of the river may also contribute to degraded water quality.

In 2001 the Maine Department of Environmental Protection (DEP) TMDL report identified a 3.7 mile segment of the Mousam River, located from the Route 4 bridge to Estes Lake, as not attaining Class C standards due to dissolved oxygen concentration. This segment is included on Maine's 303(d) list for both point and non-point sources. Maine DEP lists a 9.9 mile segment of the river in Sanford from the Route 224 bridge to Estes Lake as impaired due to toxics and nutrients.

According to Maine's statutory Water Classification System, the Mousam River Basin has the designations listed below. Below head of tide, the river is Class SB.

- A. Mousam River, main stem.
 - (1) From the outlet of Mousam Lake to a point located 0.5 miles above Mill Street in Springvale Class B.
 - (2) From a point located 0.5 mile above Mill Street in Springvale to its confluence with Estes Lake Class C.
 - (3) From the outlet of Estes Lake to tidewater Class B.
- B. Mousam River, tributaries Class B.

Monitoring History

- The Maine DEP Biological Monitoring Program has been monitoring the river since 1995. This data is available on DEP's website.
- The Mousam and Kennebunk Rivers Alliance (MKA) began in 2009 with assistance from the Wells National Estuarine Research Reserve (NERR) and Maine Rivers for the purpose of monitoring the Kennebunk and Mousam rivers. MKA joined the Volunteer River Monitoring Program in 2009.
- In 2009, MKA monitored 11 sites. In 2010, two sites were added to bracket the sewage outfall upstream and downstream in Sanford. Two additional sites in Sanford were added in 2012.
- "Since 2012, several stormwater BMPs have been installed in Sanford and Alfred to treat urban, industrial and agricultural runoff draining to Number One Pond and Estes Lake. Remediation activities at Sanford landfill adjacent to the river were completed in 1999, landfill was capped and an up-gradient slurry wall installed. Surface and groundwater monitoring continues to assess the effect of the landfill and remediation on the river."

Methods and Sampling Sites

Mousam Kennebunk Alliance has eleven sites on the main stem. Four tributary sites are located on the Middle Branch, Littlefield River and Back Creek. All sites are freshwater except sites MOUR04 and BC02. Previous reports identified Station MOUR35 as Class SB, but it has since been determined that this site is just above the hydraulic head of tide and is freshwater. All of the Mousam River sites are VRMP approved.

Monitoring is conducted biweekly from June through September. Monitors take measurements of water temperature and dissolved oxygen using a YSI meter. Specific conductance is measured using either a YSI meter or an Oakton EC 11+/11 Testr pen and salinity is measured at the tidal sites. Grab samples for *E. coli* are collected at the freshwater sites and Enterococcus bacteria at the tidal sites. Bacteria samples are transported to Nelson Labs for analysis.

1

¹ State of Maine Department of Environmental Protection 2014 Integrated Water Quality Monitoring and Assessment Report

Table 5-5-1: Mousam and Kennebunk Rivers Alliance sampling sites for the Mousam River.

Main Stem Sites (Ordered from upstream to downstream)											
VRMP Site ID	Organization Site Code	Sample Location	River Mile	Class							
SMU290	MOUR290	Headwaters	25.6	В							
SMU280	MOUR280	S Curve Road	24.6	В							
SMU250	MOUR250	Behind YMCA	21.6	С							
SMU232	MOUR232	High Street/Weaver Dr	19.7	С							
SMU204	MOUR204	Off Route 4	16.9	С							
SMU163	MOUR163	New Dam Road	12.8	С							
SMU144	MOUR144	Whicher's Hill Road	10.9	В							
SMU80	MOUR80	Mill Street	4.6	В							
SMU39	MOUR39	Berry Ct.	0.5	В							
SMU35	MOUR35	Roger's Pond	0.1	В							
SMU04	MOURO4	Route 9 Bridge	0.4	SB							
	Tributar	y Sites									
Middle Branch Mousam River SMUMB58	MOURMB58	Mast Road	6.9	В							
Middle Branch Mousam River SMUMB33	MOURMB33	Swett's Bridge	4.4	В							
Littlefield River SMUMBLR18	LR18	Back Road	2.2	В							
Back Creek SMUBC02	BC02	Above Parson's Beach	0.2	SB							

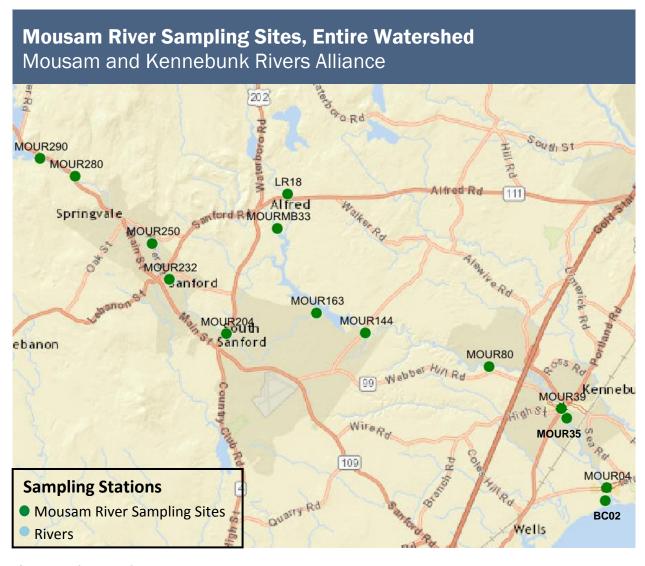


Figure 5-5-1: Map of Mousam and Kennebunk Rivers Alliance sampling sites on Mousam River.

Results

Refer to appendix A-1 for discussion of individual site data and trends.

For the purpose of discussion, the sampling stations are divided into three groups: Upper main stem (MOUR290, MOUR280, MOUR250, MOUR232, MOUR204), middle-lower main stem (MOUR163, MOUR144, MOUR80, MOUR39, MOUR35) and tributaries (MOUR-LR18, MOUR-MB58, MOUR-MB33, MOUR-BC02), and tidal sites (MOUR-04 and BC02).

Two types of graphs are provided in this report to look at water quality data. The first type of graph is a longitudinal profile graph, which depicts main stem sites according to their position (river mile) on the river (the larger the river mile, the farther upstream the sampling station is). A box and whisker diagram depicts the range of data observed at each station during the course of the sampling season. The box represents the range of the middle 50% of values, the whiskers represent the minimum and maximum extremes, and the line connects the median values at each station. The longitudinal profile plot is useful for showing general water quality trends and can be helpful in identifying the location of specific influences.

The second type of graph is a time series graph, which shows the temporal/seasonal trends of water quality data associated with each station. Time series graphs are useful in assessing the relative influence of external factors (e.g., weather) on water quality trends.

Dissolved Oxygen

Dissolved oxygen (DO) levels are generally lowest early in the morning and then increase during the day, peaking in the mid-to-late afternoon. Monitors should try to collect some samples early in the morning. Dissolved oxygen is also affected by flow conditions and temperature. During high flow conditions, more oxygen is added to the river from the atmosphere as the water is more turbulent and there is more opportunity for mixing. If flow during the summer months is higher or lower than normal, dissolved oxygen will be affected.

Class B criteria for dissolved oxygen are a minimum of 7 mg/l (milligrams/liter) or 75% saturation. Class C criteria for dissolved oxygen are a minimum of 5 mg/l or 60 % saturation. To meet water quality criteria, both concentration and saturation standards must be met. The Class SB criterion is 85% saturation.

2016 Results

The upper Mousam River mainstem sites, which include sites MOUR-290, MOUR-280, MOUR-250, MOUR-232 and MOUR-204, all met dissolved oxygen (DO) criteria for both concentration and percent saturation on all dates. Four of these sites are Class C, and so have lower criteria of 5 mg/l and 60% saturation. Sites MOUR-250 and MOUR-232 (which are Class C) met the Class B criteria on all dates. The middle mainstem Mousam River sites include sites MOUR-163, MOUR-144, MOUR-80, MOUR-39, and MOUR-35; and tributaries MOURMB-33 and LR-18. The mainstem site MOUR-144 did not meet Class B criterion for DO concentration on one date in June. Site MOUR-80 did not meet Class B criteria for concentration and percent saturation on one date (in

early September). Site MOUR-39 did not meet Class B criteria for concentration on four dates and percent saturation on three dates (August-September). Tributary sites MOURMB-33 and LR-18 did not meet Class B criterion for concentration and percent saturation on all four sample dates. The tributary sites are consistently low each year, although LR-18 was better than previous years. The tidal sites are MOUR-04 and BC-02. Both of these sites did not meet the Class SB criterion for percent saturation on three sample dates (July-August through September). Overall, the dissolved oxygen for the upper Mousam sites is excellent. The middle-lower mainstem sites are good to excellent, except for site MOUR-39, which was fair. The tributary sites are fair to poor and the tidal sites are fair to good.

The longitudinal DO profiles show a general decreasing trend in the middle portion of the river, with some recovery near the bottom end of the river. The middle portion of the river is characterized by a fair amount of urban development around Sanford as well as a slower moving section of river with a fair amount of wetland area. Both of these factors likely contribute to the general DO sag in the middle portion of the river.

The monitors did a decent job of getting out to many of the sites earlier in the day (before 8:00 am) and should continue to try and do so. Afternoon is the time of day when plant photosynthesis peaks, and DO is at the highest level during any 24-hour period. Supplemental afternoon monitoring could be beneficial to help assess the root cause of non-attainment sites. If possible, monitors should also try to sample biweekly through July and August (at least).

Table 5-5-2: A summary of minimum, maximum, and mean dissolved oxygen concentration (mg/l) values for Mousam and Kennebunk Rivers Alliance monitoring sites on the Mousam River.

Main Stem Sites												
		(Orde	ered from upstr	eam to dowr	nstream)							
Site	Class	# Sample Points	Mean	Minimum	Maximum	Criterion	# Not Meeting Criterion					
MOUR-290	В	4	7.4	7.2	7.8	7	0					
MOUR-280	В	4	7.5	7.2	7.9	7	0					
MOUR-250	С	4	7.9	7.7	8.0	5	0					
MOUR-232	С	4	8.0	7.9	8.1	5	0					
MOUR-204	С	4	6.8	6.3	7.1	5	0					
MOUR-163	С	4	6.2	5.6	7.0	5	0					
MOUR-144	В	4	7.1	6.7	7.4	7	1					
MOUR-80	В	8	7.5	6.6	8.0	7	1					
MOUR-39	В	8	7.0	6.0	8.4	7	4					
MOUR-35	В	7	8.7	8.0	9.3	7	0					
MOUR-04	SB	7	8.2	6.8	9.4	n/a	n/a					

	Tributary Sites												
MOURMB-33	В	8 4 6.3 5.9 6.6 7 4											
LR18	В	4	5.4	5.3	5.6	7	4						
BC02	SB	5	7.4	5.9	8.6	n/a	n/a						

Table 5-5-3: A summary of minimum, maximum, and mean dissolved oxygen saturation (%) values for Mousam and Kennebunk Rivers Alliance monitoring sites on the Mousam River.

	Main Stem Sites (Ordered from upstream to downstream)												
Site	Class	# Sample Points	Mean	Minimum	Maximum	Criterion	# Not Meeting Criterion						
MOUR-290	В	4	88.1	86.4	89.8	75	0						
MOUR-280	В	4	86.7	85.4	87.6	75	0						
MOUR-250	С	4	92.3	90.2	94.5	60	0						
MOUR-232	С	4	95.1	94.2	95.7	60	0						
MOUR-204	С	4	81.3	73.4	85.2	60	0						
MOUR-163	С	4	72.3	65.8	80.0	60	0						
MOUR-144	В	4	85.5	77.8	89.6	75	0						
MOUR-80	В	8	86.9	74.7	95.6	75	1						
MOUR-39	В	8	79.3	65.1	89.2	75	3						
MOUR-35	В	7	96.9	90.3	102.1	75	0						
MOUR-04	SB	7	86.3	69.5	97.8	85	3						
			Tributa	ry Sites									
MOURMB-33	В	4	66.1	64.0	68.2	75	4						
LR18	В	4	62.1	59.1	66.4	75	4						
BC02	SB	5	77.8	61.6	90.1	85	3						

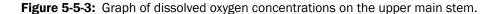
MOUSAM RIVER - MAINSTEM SITES (DISSOLVED OXYGEN)

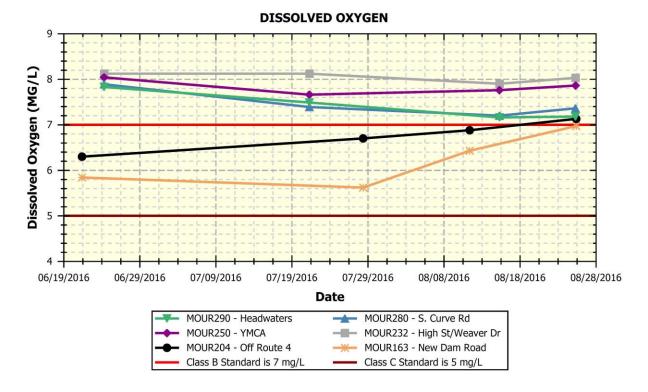
10

9

8

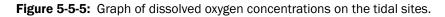
7

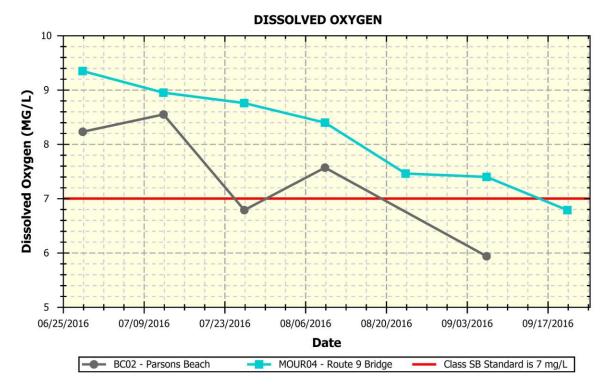

6


5

Class SB & B Standard is 7 mg/L

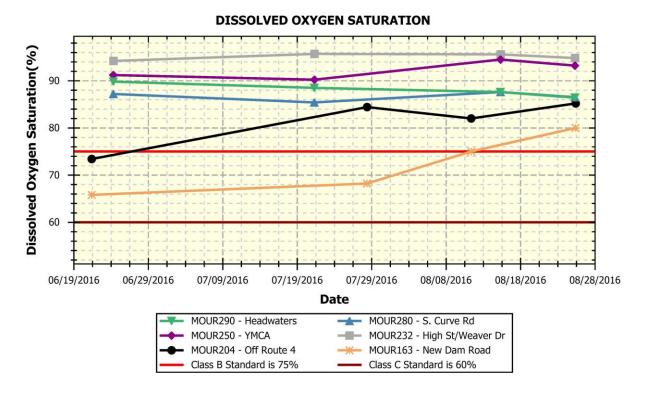
Station Dissolved Oxygen


Figure 5-5-2: Graph of dissolved oxygen concentrations on the main stem by river mile.



DISSOLVED OXYGEN Dissolved Oxygen (MG/L) 06/12/2016 07/27/2016 08/11/2016 06/27/2016 07/12/2016 08/26/2016 09/10/2016 09/25/2016 **Date** LR18 - Back Road MOURMB33 - Swett's Bridge MOUR80 - Mill Street MOUR39 - Berry Ct → MOUR35 - Rogers Pond MOUR144 - Whichers Mill Rd Class B Standard is 7 mg/L


Figure 5-5-4: Graph of dissolved oxygen concentrations on the middle main stem and tributaries.



MOUSAM RIVER - MAINSTEM SITES (DISSOLVED OXYGEN SATURATION) 110 Dissolved Oxygen Saturation (%) 100 90 80 70 60 50 20 10 25 15 5 0 **River Mile** Station D.O. Saturation Class SB Standard is 85% Class B Standard is 75% Class C Standard is 60%

Figure 5-5-6: Graph of dissolved oxygen saturation on the main stem by river mile.

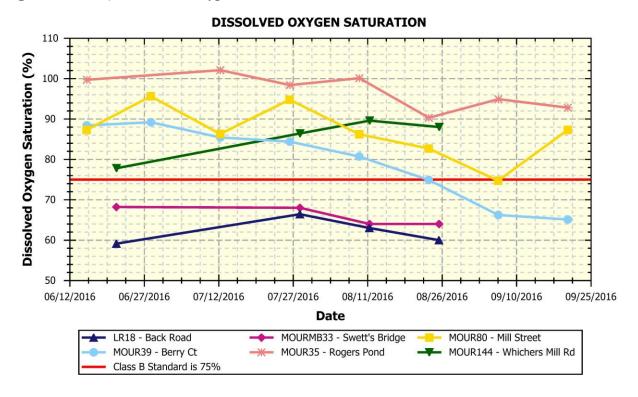
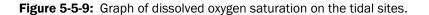
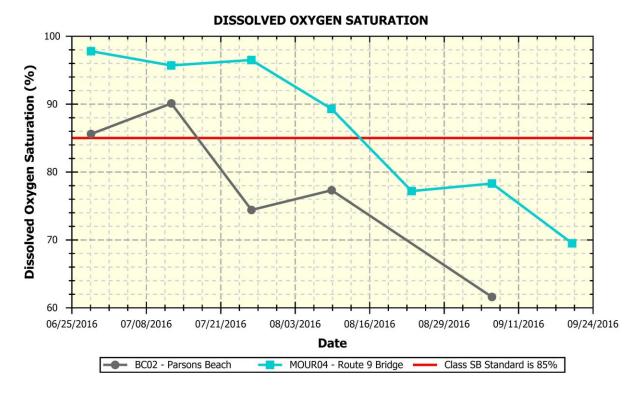




Figure 5-5-8: Graph of dissolved oxygen saturation on the middle main stem and tributaries.

Water Temperature

Maine's Regulations Relating to Temperature (06-096 CMR Chapter 582) require that discharge of pollutants not raise the temperature of any river and stream above the EPA criteria for indigenous species (23°C maximum and 19°C weekly average) or 0.3°C (0.5°F) above the temperature that would naturally occur outside a mixing zone established by the Board of Environmental Protection. Pollutant is defined in statute as many things including dirt and heat. For tidal waters, discharge of pollutants may not raise the temperature more than 4°F (2.2°C) or more than 1.5°F (0.8°C) from June 1 to September 1, and may not cause the temperature of any tidal waters to exceed 85°F (29°C) at any point outside a mixing zone established by the Board of Environmental Protection. These temperature criteria do not apply to this VRMP data.

2016 Results

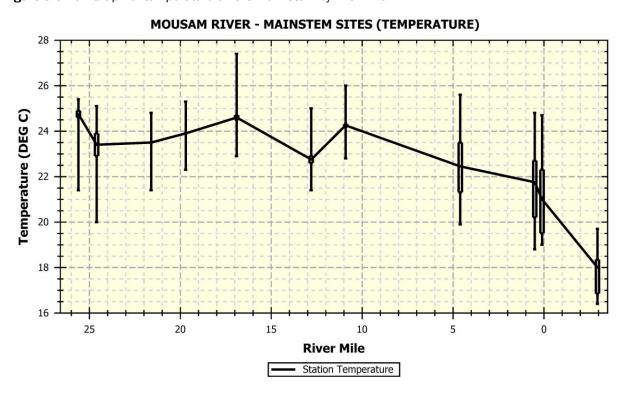
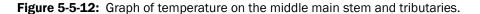

Mean temperature on the mainstem sites ranged from 21.2°- 24.9° C and maximum temperature ranged from 24.7°- 27.4° C. Temperature remained above 20.0° C for the July-August period at all the mainstem sites. The fairly high temperatures may reflect that there are a number of impoundments along the river. The tributary site LR-18 was similar to the main stem, while site MOURMB-33 was cooler with mean temperature of 17.3 °C and temperature did not get above 20.0° C. The 2 tidal sites were similar with mean temperatures of 17.6°- 17.8° C and maximum temperatures of 19.7°- 19.8° C. Overall, temperatures are high for most of the sites.

Table 5-5-4: A summary of minimum, maximum, and mean water temperature (°C) values for Mousam and Kennebunk Rivers Alliance monitoring sites on the Mousam River.

	Main Stem Sites (Ordered from upstream to downstream)													
Site	Class	# Sample Points	Mean	Minimum	Maximum	Criterion	# Exceeding Criterion							
MOUR-290	В	4	24.1	21.4	25.4	n/a	n/a							
MOUR-280	В	4	23.0	20.0	25.1	n/a	n/a							
MOUR-250	С	4	23.3	21.4	24.8	n/a	n/a							
MOUR-232	С	4	23.9	22.3	25.3	n/a	n/a							
MOUR-204	С	4	24.9	22.9	27.4	n/a	n/a							
MOUR-163	С	4	23.0	21.4	25.0	n/a	n/a							
MOUR-144	В	4	24.3	22.8	26.0	n/a	n/a							
MOUR-80	В	8	22.4	19.9	25.6	n/a	n/a							
MOUR-39	В	8	21.6	18.8	24.8	n/a	n/a							
MOUR-35	В	7	21.2	19.0	24.7	n/a	n/a							
MOUR-04	SB	7	17.8	16.4	19.7	n/a	n/a							

			Tributa	ry Sites									
MOURMB-33	В	17.5 10.5 15.0 7											
LR18	В	4	22.7	21.3	25.5	n/a	n/a						
BC02	SB	5	17.6	15.6	19.8	n/a	n/a						


Figure 5-5-10: Graph of temperature on the main stem by river mile.

TEMPERATURE 28 27 26 Temperature (DEG C) 25 23 22 21 20 19 06/19/2016 06/29/2016 07/09/2016 07/19/2016 07/29/2016 08/08/2016 08/18/2016 08/28/2016 **Date** → MOUR280 - S. Curve Rd MOUR290 - Headwaters

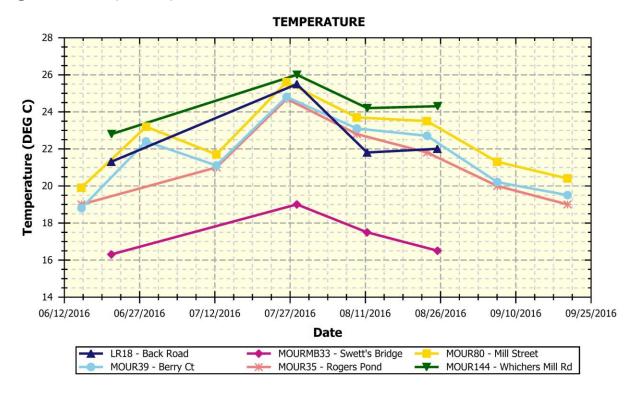
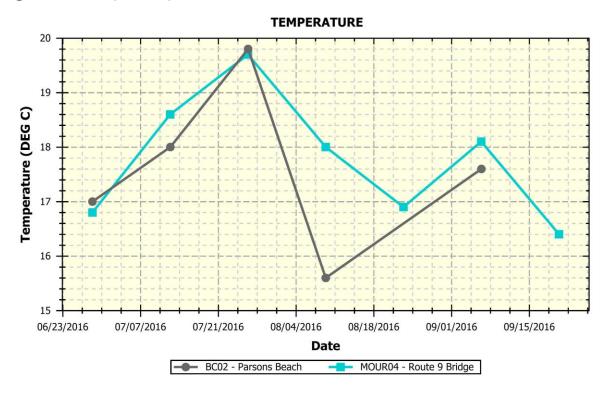

- MOUR232 - High St/Weaver Dr

Figure 5-5-11: Graph of temperature on the upper main stem.



MOUR250 - YMCA

MOUR204 - Off Route 4

Figure 5-5-13: Graph of temperature on the tidal sites.

Specific Conductance

Specific conductance is related to the amount of dissolved materials in the water. While there are no numerical standards, a relationship exists between conductivity and chloride which has numerical criteria. In general, streams located in urban areas tend to have higher specific conductance due to polluted urban stormwater runoff. This may also in large part be due to salt buildup in surface and groundwater from road maintenance practices.

2016 Results

Mean specific conductance at all the sites ranged from $81\text{-}261~\mu\text{S/cm}$. The values for the upper part of the river were low. The middle-lower mainstem sites were all similar to each other and slightly higher than the upper mainstem sites overall. The tributary site MOURMB-33 was the highest of all the sites, while tributary site LR-18 was relatively low. In general, specific conductance was slightly high for all sites except the upper part of the mainstem. Specific conductivity is good overall.

Table 5-5-5: A summary of minimum, maximum, and mean specific conductivity (μ S /cm) values for Mousam and Kennebunk Rivers Alliance monitoring sites on the Mousam River.

	Main Stem Sites (Ordered from upstream to downstream)													
Site	Class	# Sample Points	Mean	Minimum	Maximum	Criterion	# Exceeding Criterion							
MOUR-290	В	4	84	81	85	n/a	n/a							
MOUR-280	В	4	84	82	86	n/a	n/a							
MOUR-250	С	4	96	93	n/a	n/a								
MOUR-232	С	4	106	101	113	n/a	n/a							
MOUR-204	С	4	170	161	184	n/a	n/a							
MOUR-163	С	4	152	134	170	n/a	n/a							
MOUR-144	В	4	166	156	175	n/a	n/a							
MOUR-80	В	8	166	153	177	n/a	n/a							
MOUR-39	В	8	186	164	220	n/a	n/a							
MOUR-35	В	4	183	163	197	n/a	n/a							
MOUR-04	SB	Tidal	-	-	-	-	-							
			Tributa	ry Sites										
MOURMB-33	В	4	261	204	300	n/a	n/a							
LR-18	В	4	139	123 146		n/a	n/a							
BC-02	SB	Tidal	-	-	-	-	-							

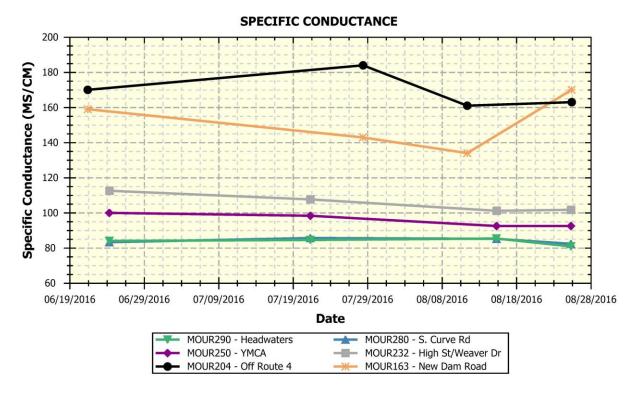
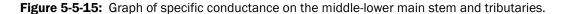
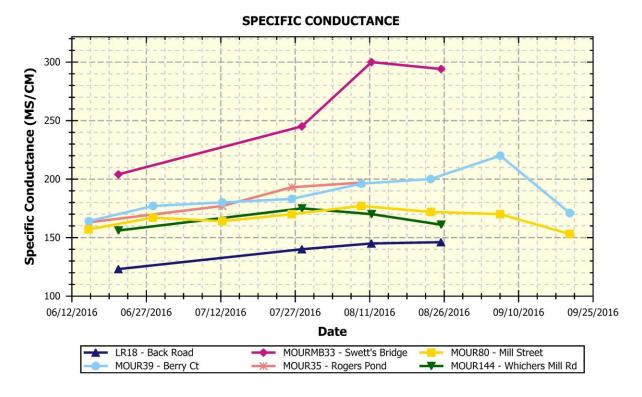




Figure 5-5-14: Graph of specific conductance on the upper main stem.

Bacteria

Enterococcus bacteria are used as the indicator organism for marine waters and *E. coli* bacteria are used for freshwaters. While these types of bacteria are not pathogens, their presence in the water may indicate the presence of other organisms including bacteria and viruses that can cause gastrointestinal illnesses. Monitoring should include at least 6 samples and include a mix of dry and storm event sampling.

Class B criteria for bacteria are as follows: "Between May 15th and September 30th, the number of *Escherichia Coli* of human and domestic origin shall not exceed a geometric mean of 64/100 ml (milliliters) or an instantaneous level of 236/100 ml." Class C criteria are: "Between May 15th and September 30th, the number of *Escherichia coli* of human and domestic origin shall not exceed a geometric mean of 126/100 ml (milliliters) or an instantaneous level of 236/100 ml." Class SB criteria are as follows: "Between May 15th and September 30th, the numbers of enterococcus bacteria of human and domestic animal origin in these waters may not exceed a geometric mean of 8 per 100 milliliters or an instantaneous level of 54 per 100 milliliters." Geometric means are calculated instead of averages because it is more appropriate to use this calculation for something like bacteria where there may be one or more very high or low values that can skew the mean.

2016 Results

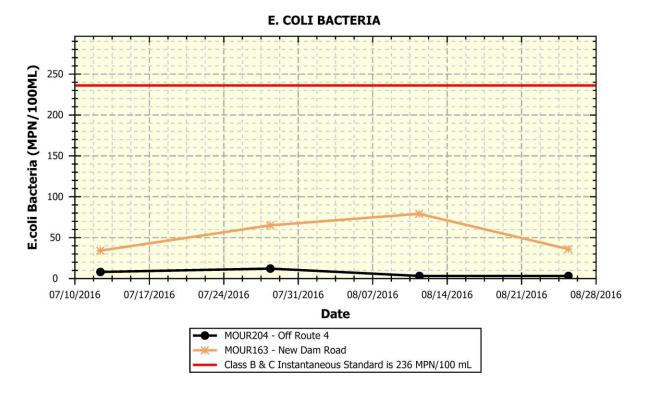
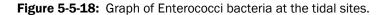
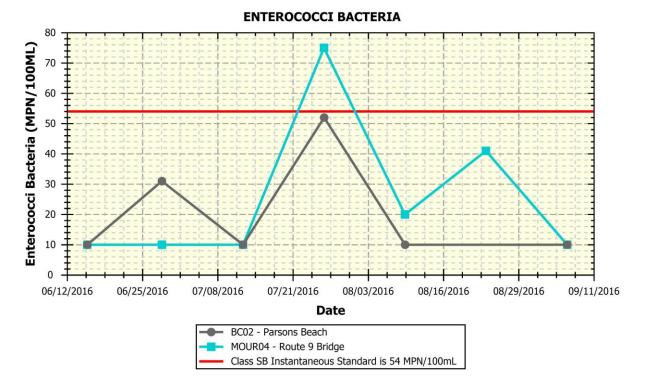

Two of the freshwater sites (MOUR-39 and MOUR-35) exceeded the instantaneous criterion of 126 MPN/100ml on one date and the geometric mean criterion of 126 MPN/100 ml slightly. Tidal site MOUR-04 exceeded the instantaneous criterion of 54 MPN/100ml on one of seven sampling dates. Both tidal sites (MOUR-04 and BC02) also slightly exceeded the geometric mean criterion of 8 MPN/100ml. No samples were collected following any significant rain events, which may explain why there are not any high results. Overall, bacteria levels were good to excellent at the freshwater sites and good at the tidal sites.

Table 5-5-6: A summary of minimum, maximum, and geometric means for bacteria (MPN/100 mL) values for Mousam and Kennebunk Rivers Alliance monitoring sites on the Mousam River.

	Main Stem Sites (Ordered from upstream to downstream)													
Site	Class	# Sample Points	Туре	Min	Max	Geometric Mean	Criterion Inst/Geo	# Exceeding Criterion						
MOUR-290	В	-	E. Coli	-	-	-	236/64	-						
MOUR-280	2. 6011													
MOUR-250	С	-	E. Coli	-	-	-	236/126	-						
MOUR-232	С	-	E. Coli	-	-	-	236/126	-						
MOUR-204	С	4	E. Coli	3	12	5	236/126	0						
MOUR-163	С	4	E. Coli	34	79	50	236/126	0						
MOUR-144	В	4	E. Coli	1	11	5	236/64	0						
MOUR-80	В	7	E. Coli	2	39	7	236/64	0						


MOUR-39	В	7	E. Coli	47	249	89	236/64	1		
MOUR-35	В	6	E. Coli	38	548	126	236/64	1		
MOUR-04	SB	7	Entero	10	75	18	54/8	1		
Tributary Sites										
MOUR-MB33	В	4	E. Coli	12	148	48	236/64	0		
LR18	В	4	E. Coli	21	37	27	236/64	0		
BC02	SB	6	Entero	10	52	16	54/8	0		


Figure 5-5-16: Graph of *E.coli* at upper main stem sites.

E. COLI BACTERIA 600 E.coli Bacteria (MPN/100ML) 500 400 300 200 100 06/12/2016 07/08/2016 07/21/2016 06/25/2016 08/03/2016 08/16/2016 08/29/2016 09/11/2016 **Date** LR18 - Back Road MOURMB33 - Swett's Bridge MOUR80 - Mill Street MOUR39 - Berry Ct MOUR35 - Rogers Pond MOUR144 - Whichers Mill Rd Class B Instantaneous Standard is 236 MPN/100mL

Figure 5-5-17: Graph of E.Coli at middle-lower main stem and tributary sites.

Discussion and Recommendations

There are numerous sources of pollution and other stresses to the Mousam River and tributary sites monitored by the Mousam and Kennebunk Rivers Alliance that could potentially have an impact on water quality. Some of those sources of pollution and stress may include:

- Non-point source pollution (e.g., septic systems, eroded soil, fertilizers, pesticides, heavy metals, petroleum residues, road salt, wildlife and pet feces) and polluted stormwater originating from urban impervious surfaces (e.g. streets, parking lots, driveways, rooftops) (even though urban development and roads are fairly sparse in the watershed), agriculture, and forestry.
- Point source pollution (pollution originating from a direct discharge including wastewater treatment plant discharge, combined sewer overflows and overboard discharges).
- Ponds and impoundments (which often create more pond-like aquatic habitat conditions that may
 have higher water temperatures and lower dissolved oxygen concentrations than free-flowing
 waters).
- Natural effects of wetlands (such as contributing waters to a stream/river that have low dissolved oxygen levels due to the decomposition of larger amounts of organic matter, respiration of abundant plant matter, and low re-aeration rates that is characteristic of many wetlands).

The following are recommendations for future monitoring:

- Overall, dissolved oxygen levels were good at most of the mainstem sites this year- the
 exception being site MOUR-39, which was slightly depressed. Both tributary sites were
 somewhat low, although site LR-01 was better than previous years. It should be monitored
 throughout the season and further investigation made as to whether this is natural. Factors
 contributing to low dissolved oxygen may include low flow and the location of the site below
 extensive wetlands. Occasional mid-late afternoon sampling would help to discriminate
 whether this is potentially naturally low dissolved oxygen.
- Monitoring should continue to focus on early morning (before 8:00 am) sampling to best document potential dissolved oxygen problems. Over a 24 hour period, the lowest readings occur in the early morning and highest readings in mid to late afternoon. This occurs because oxygen is used up during the night due to plant respiration and during the day, plant life is photosynthesizing. This is particularly important during the summer months of July through early September when temperatures are warmest and dissolved oxygen tends to be at the lowest levels. Ideally, all DO monitoring should be conducted before 8:00 am. Later day monitoring is not likely to represent critical conditions, which makes it difficult to assess the overall river condition.
- Bacteria sampling should include sampling during both dry and wet weather conditions (one to two storm events) and include at least six to seven samples. This is important to calculate an accurate geometric mean value.
- Continue monitoring at all stations to continue building a long term trend database.

Appendix A-1

^{** &}quot;NA" = normal environmental sample; "D" = field duplicate; "L" = lab duplicate; "D.O." = dissolved oxygen; "Spec. Cond" = specific conductance; "TSS" = total suspended solids"

				**						**			Total		E. coli	
				Sample	*		Water	**	**	Spec.		Turb-	Diss.	**	Bacteria	Entero-cocci
Organization				Туре	Sample	Depth	Temp (DEG	D.O. Sat.	D.O.	Cond.	Salinity	idity	Solids	TSS	(MPN/	(MPN/
Site Code	VRMP Site ID	Date	Time	Qualifier	Depth	Unit	C)	(%)	(MG/L)	(US/CM)	(PPTH)	(NTU)	(MG/L)	(MG/L)	100ML)	100ML)
Mousam River	- Mousam and Kennebunk Rivers Alliance: Approved Site	S														
				ı	1		ı					•				
BC-02	BACK CREEK - SMUBC02 - VRMP	6/15/2016	11:13 AM	NA												L 10
BC-02	BACK CREEK - SMUBC02 - VRMP	6/15/2016	11:13 AM	L												L 10
BC-02	BACK CREEK - SMUBC02 - VRMP	6/28/2016	8:34 AM	NA			17.0	85.6	8.2		31.5					31
BC-02	BACK CREEK - SMUBC02 - VRMP	7/12/2016	8:45 AM	NA			18.0	90.1	8.6		31					L 10
BC-02	BACK CREEK - SMUBCO2 - VRMP	7/26/2016	8:49 AM	NA			19.8	74.4	6.8							52
BC-02	BACK CREEK - SMUBCO2 - VRMP	8/9/2016	8:34 AM	NA			15.6	77.3	7.6							10
BC-02	BACK CREEK - SMUBC02 - VRMP	9/6/2016	8:47 AM	NA			17.6	61.6	5.9							L 10
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	6/21/2016	9:00 AM	NA			21.3	59.1	5.3	123						
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	7/12/2016	9:00 AM	NA						4.40					37	
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	7/28/2016	8:20 AM	NA			25.5	66.4	5.4	140					22	
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	8/11/2016	8:25 AM	NA			21.8	63.0	5.6	145						
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	8/11/2016	8:30 AM	NA			22.0	60.0		4.46					32	
LR-18	LITTLEFIELD RIVER - SMUMBLR18 - VRMP	8/25/2016	8:55 AM	NA			22.0	60.0	5.3	146					21	
	MIDDLE BRANCH MOUSAM RIVER - SMUMB33 - VRMP	6/21/2016	9:15 AM	NA			16.3	68.2	6.6	204					40	
	MIDDLE BRANCH MOUSAM RIVER - SMUMB33 - VRMP	7/12/2016	9:15 AM	NA			10.0	60.0	C 1	245					49	-
MOURMB-33	MIDDLE BRANCH MOUSAM RIVER - SMUMB33 - VRMP	7/28/2016	8:35 AM	NA NA			19.0	68.0 64.0	6.1	245 300					12 59	
	MIDDLE BRANCH MOUSAM RIVER - SMUMB33 - VRMP	8/11/2016	8:40 AM				17.5									
MOURMB-33 MOUR-04	MIDDLE BRANCH MOUSAM RIVER - SMUMB33 - VRMP	8/25/2016	9:08 AM	NA NA			16.5	64.0	5.9	294					148	L 10
MOUR-04	MOUSAM RIVER - SMU04 - VRMP MOUSAM RIVER - SMU04 - VRMP	6/15/2016 6/28/2016	10:52 AM 8:15 AM	NA NA			16.8	97.8	9.4		31.1					L 10
MOUR-04	MOUSAM RIVER - SMU04 - VRMP MOUSAM RIVER - SMU04 - VRMP	6/28/2016	8:15 AM	NA NA			10.8	97.8	9.4		31.1					L 10
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	7/12/2016	8:18 AIVI 8:25 AM	NA NA			18.6	95.7	9.0		26					10
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	7/26/2016	8:30 AM	NA NA			19.7	96.5	8.8		27					75
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	8/9/2016	8:20 AM	NA NA			18.0	89.3	8.4		34					20
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	8/23/2016	7:56 AM	NA NA			16.9	77.2	7.5		34					41
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	9/6/2016	8:32 AM	NA NA			18.1	78.3	7.5							10
MOUR-04	MOUSAM RIVER - SMU04 - VRMP	9/20/2016	8:25 AM	NA NA			16.4	69.5	6.8							10
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	6/15/2016	10:25 AM	NA NA			19.0	99.7	9.3	163					56	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	7/12/2016	8:04 AM	NA NA			21.0	102.1	9.1	177					38	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	7/26/2016	8:05 AM	NA NA			24.7	98.4	8.2	193					135	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	8/9/2016	7:56 AM	NA NA			22.8	100.1	8.7	197					172	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	8/9/2016	7:56 AM	D			22.8	100.1	8.7	197					1/2	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	8/9/2016	7:59 AM	D			22.0	100.3	0.7	137					179	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	8/23/2016	7:35 AM	NA NA			21.8	90.3	8.0						148	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	9/6/2016	8:03 AM	NA NA			20.0	94.9	8.7						548	
MOUR-35	MOUSAM RIVER - SMU35 - VRMP	9/20/2016	8:02 AM	NA NA			19.0	92.8	8.6						340	
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	6/15/2016	10:08 AM	NA NA			18.8	88.4	8.4	164					50	+
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	6/28/2016	7:52 AM	NA NA			22.4	89.2	7.7	177					49	+
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	7/12/2016	7:50 AM	NA NA			21.1	85.4	7.6	180		 			75	†
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	7/26/2016	7:45 AM	NA NA			24.8	84.4	7.0	183					249	
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	8/9/2016	7:40 AM	NA NA			23.1	80.7	6.9	196					172	+
.VIOON 33	111000AIVI III VEIL SIVIOSS VIIIVIF	0/3/2010	7. 7 0 AIVI	11/1			23.1	00.7	0.5	130		1			1/2	

^{*} Sampling depths are only reported for Tier 1 VRMP sites.

				**						**					l	
								**	**				Total	**	E. coli	L
				Sample	*		Water			Spec.		Turb-	Diss.		Bacteria	Entero-cocci
Organization				Type	Sample				D.O.	Cond.	Salinity	idity	Solids	TSS	(MPN/	(MPN/
Site Code	VRMP Site ID	Date	Time	Qualifier	Depth	Unit	C)	(%)	(MG/L)	(US/CM)	(PPTH)	(NTU)	(MG/L)	(MG/L)	100ML)	100ML)
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	8/23/2016	7:18 AM	NA			22.7	74.9	6.5	200					118	
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	9/6/2016	7:43 AM	NA			20.2	66.2	6.0	220					47	
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	9/6/2016	7:43 AM	D			20.2	66.1	6.0							
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	9/6/2016	7:46 AM	D											115	
MOUR-39	MOUSAM RIVER - SMU39 - VRMP	9/20/2016	7:42 AM	NA			19.5	65.1	6.2	171						<u> </u>
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	6/15/2016	9:30 AM	NA			19.9	87.3	8.0	157					4	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	6/28/2016	7:32 AM	NA			23.2	95.6	8.0	167					3	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	7/12/2016	7:20 AM	NA			21.7	86.3	7.6	164					6	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	7/12/2016	7:20 AM	D			21.7	86.5	7.6	183						
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	7/12/2016	7:39 AM	D											6	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	7/26/2016	7:00 AM	NA			25.6	94.8	7.8	170					10	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	8/9/2016	7:00 AM	NA			23.7	86.2	7.3	177					2	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	8/9/2016	7:00 AM	L											L 1	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	8/23/2016	6:50 AM	NA			23.5	82.7	7.0	172					39	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	9/6/2016	7:02 AM	NA			21.3	74.7	6.6	170					15	
MOUR-80	MOUSAM RIVER - SMU80 - VRMP	9/20/2016	7:02 AM	NA			20.4	87.3	7.9	153						
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	6/21/2016	10:00 AM	NA			22.8	77.8	6.7	156						
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	7/12/2016	10:05 AM	NA											11	
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	7/28/2016	9:20 AM	NA			26.0	86.4	7.0	175					1	
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	7/28/2016	9:20 AM	D			26.0	86.3	7.0	179						
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	8/11/2016	9:10 AM	NA											4	
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	8/11/2016	9:25 AM	NA			24.2	89.6	7.4	170						
MOUR-144	MOUSAM RIVER - SMU144 - VRMP	8/25/2016	9:50 AM	NA			24.3	88.0	7.4	161					11	
MOUR-163	MOUSAM RIVER - SMU163 - VRMP	6/21/2016	9:30 AM	NA			21.4	65.8	5.8	159						
MOUR-163	MOUSAM RIVER - SMU163 - VRMP	7/12/2016	9:30 AM	NA											34	
MOUR-163	MOUSAM RIVER - SMU163 - VRMP	7/28/2016	8:42 AM	NA			25.0	68.2	5.6	143					65	
MOUR-163	MOUSAM RIVER - SMU163 - VRMP	8/11/2016	9:00 AM	NA			22.9	75.0	6.4	134					79	
MOUR-163	MOUSAM RIVER - SMU163 - VRMP	8/25/2016	9:22 AM	NA			22.6	80.0	7.0	170					36	
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	6/21/2016	9:45 AM	NA			22.9	73.4	6.3	170						
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	7/12/2016	9:45 AM	NA											8	+
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	7/28/2016	9:05 AM	NA			27.4	84.4	6.7	184					12	†
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	8/11/2016	9:10 AM	NA			24.5	82.0	6.9	161						†
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	8/11/2016	9:25 AM	NA			2.13	02.0	0.5	101					3	+
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	8/25/2016	9:40 AM	NA			24.7	85.2	7.1	163					3	+
MOUR-204	MOUSAM RIVER - SMU204 - VRMP	8/25/2016	9:40 AM	D			24.7	86.0	7.2	161						+
MOUR-232	MOUSAM RIVER - SMU232 - VRMP	6/24/2016	7:40 AM	NA			22.3	94.2	8.1	112.6						
MOUR-232	MOUSAM RIVER - SMU232 - VRMP	7/21/2016	7:40 AM	NA			23.9	95.7	8.1	107.7						
MOUR-232	MOUSAM RIVER - SMU232 - VRMP	8/15/2016	7:40 AM	NA			25.3	95.6	7.9	101.2						
MOUR-232	MOUSAM RIVER - SMU232 - VRMP	8/25/2016	7:40 AM	NA NA			23.9	94.8	8.0	101.7						
MOUR-250	MOUSAM RIVER - SMU250 - VRMP	6/24/2016	7:40 AM	NA NA			21.4	91.2	8.0	101.7						
MOUR-250	MOUSAM RIVER - SMU250 - VRMP	7/21/2016	7:25 AM	NA NA			23.5	90.2	7.7	98.4						+
MOUR-250	MOUSAM RIVER - SMU250 - VRMP	8/15/2016	7:25 AM	NA NA			24.8	94.5	7.7	92.5				 		+
MOUR-250	MOUSAM RIVER - SMU250 - VRMP	8/25/2016	7:25 AM	NA NA			23.5	93.2	7.8	92.5				 		+
MOUR-280	MOUSAM RIVER - SMU280 - VRMP	6/24/2016	7:25 AM	NA NA			20.0	87.2	7.9	83.3						
MOUR-280	MOUSAM RIVER - SMU280 - VRMP	7/21/2016	7:15 AM	NA NA			22.9	85.4	7.9	85.7						1
MOUR-280	MOUSAM RIVER - SMU280 - VRMP	8/15/2016	7:15 AM	NA NA			25.1	87.6	7.4	85.7						
MOUR-280 MOUR-280	MOUSAM RIVER - SMU280 - VRMP MOUSAM RIVER - SMU280 - VRMP	-, -, -	7:15 AM 7:10 AM	NA NA			23.9	86.5	7.4	85.2 82.4						
		8/25/2016					23.9									-
MOUR-290	MOUSAM RIVER - SMU290 - VRMP	6/24/2016	7:05 AM	NA			21.4	89.8	7.8	84.1				1		

					**						**			Total		E. coli	
					Sample	*		Water	**	**	Spec.		Turb-	Diss.	**	Bacteria	Entero-cocci
Organiz	ation				Type	Sample	Depth	Temp (DEG	D.O. Sat.	D.O.	Cond.	Salinity	idity	Solids	TSS	(MPN/	(MPN/
Site Co	ode	VRMP Site ID	Date	Time	Qualifier	Depth	Unit	C)	(%)	(MG/L)	(US/CM)	(PPTH)	(NTU)	(MG/L)	(MG/L)	100ML)	100ML)
MOUR-	-290	MOUSAM RIVER - SMU290 - VRMP	7/21/2016	7:05 AM	NA			24.9	88.5	7.5	84.6						
MOUR-	-290	MOUSAM RIVER - SMU290 - VRMP	8/15/2016	7:05 AM	NA			25.4	87.6	7.2	85.4						
MOUR-	-290	MOUSAM RIVER - SMU290 - VRMP	8/15/2016	7:05 AM	D			25.8	87.3	7.2	85.6						
MOUR-	-290	MOUSAM RIVER - SMU290 - VRMP	8/25/2016	7:00 AM	NA			24.6	86.4	7.2	81						